Dieses Bild zeigt Bernhard Weigand

Bernhard Weigand

Prof. Dr.-Ing. habil.

Direktor
Institut für Thermodynamik der Luft- und Raumfahrt

Kontakt

+49 711 685 63590
+4971168562317

Pfaffenwaldring 31
70569 Stuttgart
Deutschland
Raum: 1-137

  1. Härter, J., Martinez, D. S., Poser, R., Weigand, B., & Lamanna, G. (2023). Coupling between a turbulent outer flow and an adjacent porous medium: High resolved Particle Image Velocimetry measurements. Physics of Fluids. https://doi.org/10.1063/5.0132193
  2. Seibold, F., & Weigand, B. (2023). Numerical investigation of the flow and heat transfer in convergent swirl chambers. In High Performance Computing in Science and Engineering ’21 (S. 259--274). Springer International Publishing. https://doi.org/10.1007/978-3-031-17937-2_15
  3. Schlottke, A., Ibach, M., Steigerwald, J., & Weigand, B. (2023). Direct numerical simulation of a disintegrating liquid rivulet at a trailing edge. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’21 (S. 239--257). Springer International Publishing. https://doi.org/10.1007/978-3-031-17937-2_14
  4. Ibach, M., Steigerwald, J., & Weigand, B. (2023). Thixotropic effects in oscillating droplets. 11th International Conference on Multiphase Flow (ICMF), April 2–7, 2023, Kobe, Japan.
  5. de Botton, E., Greenberg, J. B., Arad, A., Katoshevski, D., Vaikuntanathan, V., Ibach, M., & Weigand, B. (2022). An investigation of grouping of two falling dissimilar droplets using the homotopy analysis method. Applied Mathematical Modelling, 104, 486–498. https://doi.org/10.1016/j.apm.2021.12.001
  6. Ren, W., Hu, Y., & Weigand, B. (2022). Splashing During Simultaneous Two Drops Impact Onto A Micropillared Superhydrophilic Surface. https://ilass2022.net.technion.ac.il/program/
  7. Ibach, M., Vaikuntanathan, V., Arad, A., Katoshevski, D., Greenberg, J. B., Schulte, K., & Weigand, B. (2022). Numerical Investigation of Multiple Droplet Streams and the Effect on Grouping Behavior. ILASS-Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, Tel-Aviv (Virtual).
  8. Geppert, A. K., Santini, M., Lamanna, G., Cossali, G. E., & Weigand, B. (2022). Scientific Highlights of the International Research Training Group (GRK 2160/2) „Droplet Interaction Technologies“ (DROPIT). 31th Conference on Liquid Atomization and Spray Systems, ILASS-Europe 2022, Tel-Aviv (Virtual).
  9. Arad, A., Vaikuntanathan, V., Ibach, M., Greenberg, J. B., Weigand, B., & Katoshevski, D. (2022). CFD Simulations of Droplet Grouping in Acoustic Standing Waves. ILASS-Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, Tel-Aviv (Virtual).
  10. Seibold, F., Ligrani, P., & Weigand, B. (2022). Flow and heat transfer in swirl tubes — A review. International Journal of Heat and Mass Transfer, 187, 122455. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122455
  11. Mandler, H., & Weigand, B. (2022). On frozen-RANS approaches in data-driven turbulence modeling: Practical relevance of turbulent scale consistency during closure inference and application. International Journal of Heat and Fluid Flow, 97, 109017. https://doi.org/10.1016/j.ijheatfluidflow.2022.109017
  12. Ibach, M., Vaikuntanathan, V., Arad, A., Katoshevski, D., Greenberg, J. B., & Weigand, B. (2022). Investigation of droplet grouping in monodisperse streams by direct numerical simulations. Physics of Fluids, 34(8), 083314. https://doi.org/10.1063/5.0097551
  13. Potyka, J., Stober, J., Wurst, J., Ibach, M., Steigerwald, J., Weigand, B., & Schulte, K. (2022). Towards DNS of Droplet-Jet Collisions of Immiscible Liquids with FS3D. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’22. Springer International Publishing. https://arxiv.org/abs/2212.09727
  14. Vaikuntanathan, V., Ibach, M., Arad, A., Chu, X., Katoshevski, D., Greenberg, J. B., & Weigand, B. (2022). An Analytical Study on the Mechanism of Grouping of Droplets. Fluids, 7(5), Article 5. https://doi.org/10.3390/fluids7050172
  15. Geppert, A. K., Foltyn, P., & Weigand, B. (2022). Effect of edge length and wettability on droplet impact onto a stand-alone cubic pillar. 31th Conference on Liquid Atomization and Spray Systems, ILASS–Europe 2022, Tel-Aviv (Virtual).
  16. Forster, M., Seibold, F., Krille, T., Waidmann, C., Weigand, B., & Poser, R. (2022). A Monte Carlo approach to evaluate the local measurement uncertainty in transient heat transfer experiments using liquid crystal thermography. Measurement, 190, 110648. https://doi.org/10.1016/j.measurement.2021.110648
  17. Yang, X., Seibold, F., Feng, Z., & Weigand, B. (2022). Effects of blade lean on internal swirl cooling at turbine blade leading edges. International Journal of Heat and Mass Transfer, 194, 123111. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123111
  18. Lamanna, G., Geppert, A. K., Bernard, R., & Weigand, B. (2022). Drop impact onto wetted walls: an unsteady analytical solution for modelling crown spreading. Journal of fluid mechanics, 938, A34. https://doi.org/10.1017/jfm.2022.69
  19. Härter, J., Poser, R., Weigand, B., & Lamanna, G. (2022). Impact of Porous-Media Topology on Turbulent Fluid Flow: Time-Resolved PIV Measurements.
  20. Ibach, M., Schulte, K., Vaikuntanathan, V., Arad, A., Katoshevski, D., Greenberg, J. B., & Weigand, B. (2021). Direct Numerical Simulations of Grouping Effects in Droplet Streams Using Different Boundary Conditions. ICLASS 2021, 15th Triennial International Conference on Liquid Atomization and Spray Systems, Edinburgh, UK, 29 Aug.-2 Sept. 2021. https://doi.org/10.2218/iclass.2021.5815
  21. Forster, M., & Weigand, B. (2021). Experimental and numerical investigation of jet impingement cooling onto a concave leading edge of a generic gas turbine blade. International Journal of Thermal Sciences, 164, 106862. https://doi.org/10.1016/j.ijthermalsci.2021.106862
  22. Steigerwald, J., Ibach, M., Reutzsch, J., & Weigand, B. (2021). Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’20 (S. 261–279). Springer International Publishing. https://doi.org/10.1007/978-3-030-80602-6_17
  23. Ribeiro, D., Foltyn, P., Silva, A., Lamanna, G., & Weigand, B. (2021). The Influence of Wettability on the Droplet Impact onto Micro-Structured Surfaces. ICLASS, 15th Triennial International Conference on Liquid Atomization and Spray Systems. https://doi.org/10.2218/iclass.2021.5908
  24. Foltyn, P., Ribeiro, D., Silva, A., Lamanna, G., & Weigand, B. (2021). Influence of wetting behavior on the morphology of droplet impacts onto dry smooth surfaces. Physics of Fluids, 33(6), 063305. https://doi.org/10.1063/5.0053539
  25. Steigerwald, J., Geppert, A. K., & Weigand, B. (2021). Numerical study of drop shape effects in binary drop film interactions for different density ratios. 15th Triennial International Conference on Liquid Atomization and Spray Systems, ICLASS 2021, Edinburgh, UK.
  26. Gerber, V., Baab, S., Förster, F. J., Mandler, H., Weigand, B., & Lamanna, G. (2021). Fluid injection with supercritical reservoir conditions: Overview on morphology and mixing. The Journal of Supercritical Fluids, 169, 105097. https://doi.org/10.1016/j.supflu.2020.105097
  27. Foltyn, P., Ribeiro, D., Silva, A., Lamanna, G., & Weigand, B. (2021). Effect of Surface Wettability on the Droplet Impact Morphologies on Dry Smooth Polycarbonate Surfaces. ICLASS, 15th Triennial International Conference on Liquid Atomization and Spray Systems. https://doi.org/10.2218/iclass.2021.5907
  28. Seibold, F., & Weigand, B. (2021). Numerical analysis of the flow pattern in convergent vortex tubes for cyclone cooling applications. International Journal of Heat and Fluid Flow, 90, 108806. https://doi.org/10.1016/j.ijheatfluidflow.2021.108806
  29. Y. Liu, A. K. Geppert, X. Chu, B. Heine, B. Weigand. (2021). Simulation of an annular liquid jet with a coaxial supersonic gas jet in a medical inhaler. Atomization and Sprays, 31(9), 95–116. https://doi.org/10.1615/AtomizSpr.2021037223
  30. Steinhausen, C., Gerber, V., Preusche, A., Weigand, B., Dreizler, A., & Lamanna, G. (2021). On the potential and challenges of laser-induced thermal acoustics for experimental investigation of macroscopic fluid phenomena. Experiments in Fluids, 62(2), Article 2. https://doi.org/10.1007/s00348-020-03088-1
  31. Liu, Y., Geppert, A. K., Chu, X., & Weigand, B. (2021). Simulation of an annular liquid jet with a coaxial supersonic gas jet in a medical inhalter. Atomization and Sprays, 31(9), 95–116. https://doi.org/10.1615/AtomizSpr.2021037223
  32. Foltyn, P., Restle, F., Wissmann, M., Hengsbach, S., & Weigand, B. (2021). The Effect of Patterned Micro-Structure on the Apparent Contact Angle and Three-Dimensional Contact Line. Fluids, 6(2), Article 2. https://doi.org/10.3390/fluids6020092
  33. Steigerwald, J., Reutzsch, J., Ibach, M., Baggio, M., Seck, A., Haus, B. K., & Weigand, B. (2021). Direct Numerical Simulation of a Wind-Generated Water Wave. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’19 (S. 325–341). Springer International Publishing. https://doi.org/10.1007/978-3-030-66792-4_22
  34. Arad, A., Katoshevski, D., Vaikuntanathan, V., Ibach, M., Greenberg, J. B., & Weigand, B. (2021). Longitudinal and Lateral Grouping in Droplet Streams using the Eulerian-Lagrangian Approach.
  35. Ren, W., Foltyn, P., Geppert, A., & Weigand, B. (2021). Air entrapment and bubble formation during droplet impact onto a single cubic pillar. Scientific Reports, 11(1), 18018. https://doi.org/10.1038/s41598-021-97376-3
  36. Baumgartner, D., Bernard, R., Weigand, B., Lamanna, G., Brenn, G., & Planchette, C. (2020). Influence of liquid miscibility and wettability on the structures produced by drop–jet collisions. Journal of Fluid Mechanics, 885, A23. https://doi.org/10.1017/jfm.2019.967
  37. Loureiro, D., Reutzsch, J., Kronenburg, A., Weigand, B., & Vogiatzaki, K. (2020). Towards full resolution of spray break-up in flash atomization conditions using DNS. High Performance Computing in Science and Engineering ’19.
  38. Steigerwald, J., Reutzsch, J., Ibach, M., Baggio, M., Seck, A., Haus, B., & Weigand, B. (2020). Direct Numerical Simulation of a Wind-generated Water Wave. High Performance Computing in Science and Engineering ’19.
  39. Seibold, F., Schwab, A., Dubois, V., Poser, R., Weigand, B., & von Wolfersdorf, J. (2020). Conduction and Inertia Correction for Transient Thermocouple Measurements. Part I: Analytical and Numerical Modeling. XXV Biennial Symposium on Measuring Techniques in Turbomachinery.
  40. You, Y., Seibold, F., Wang, S., Weigand, B., & Gross, U. (2020). URANS of turbulent flow and heat transfer in divergent swirl tubes using the k-ω SST turbulence model with curvature correction. International Journal of Heat and Mass Transfer, 159, 120088. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120088
  41. Bernard, R., Vaikuntanathan, V., Weigand, B., & Lamanna, G. (2020). On the crown rim expansion kinematics during droplet impact on wall-films. Experimental Thermal and Fluid Science, 118, 110168. https://doi.org/10.1016/j.expthermflusci.2020.110168
  42. Bernard, R., Vaikuntanathan, V., Lamanna, G., & Weigand, B. (2020). A New Perspective for the Characterization of Crown Rim Kinematics. In G. Lamanna, S. Tonini, G. Cossali, & B. Weigand (Hrsg.), Droplet Interactions and Spray Processes. Fluid Mechanics and Its Applications (Bd. 121, S. 163–175). Springer, Cham. https://doi.org/10.1007/978-3-030-33338-6_13
  43. Foltyn, P., Guttmann, M., Schneider, M., Fest-Santini, S., Wildenschild, D., & Weigand, B. (2020). Fabrication and Evaluation Methods of Micro-structured Surfaces for Droplet Impact Experiments. In G. Lamanna, S. Tonini, G. E. Cossali, & B. Weigand (Hrsg.), Droplet Interactions and Spray Processes (Bd. 121, S. 71--86). Springer International Publishing.
  44. Steigerwald, J., Ibach, M., Reutzsch, J., & Weigand, B. (2020). Towards the Numerical Determination of the Splashing Threshold of Two-component Drop Film Interactions. In High Performance Computing in Science and Engineering ’20. Springer.
  45. Chu, X., Wang, W., Yang, G., Terzis, A., Helmig, R., & Weigand, B. (2020). Transport of Turbulence Across Permeable Interface in a Turbulent Channel Flow: Interface-Resolved Direct Numerical Simulation. Transport in Porous Media. https://doi.org/10.1007/s11242-020-01506-w
  46. Lamanna, G., Steinhausen, C., & Weigand, B. (2020). On the Importance of Kinetic Effects in the Modelling of Droplet Evaporation at High Pressure and Temperature Conditions. In G. Lamanna, S. Tonini, G. E. Cossali, & B. Weigand (Hrsg.), Droplet Interactions and Spray Processes (S. 277--286). Springer International Publishing.
  47. Foltyn, P., Schlottke, A., & Weigand, B. (2020). Effect of plasma activation on the contact angle of smooth polymer surfaces and its long-term durability in ambient air. 10th International Colloids Conference, 7-9 December 2020 (Online) Palma de Mallorca, Spain, 10.
  48. Ren, W., Reutzsch, J., & Weigand, B. (2020). Direct Numerical Simulation of Water Droplets in Turbulent Flow. In Fluids. https://doi.org/10.3390/fluids5030158
  49. Foltyn, P., Restle, F., & Weigand, B. (2019). 360° Evaluation of Projected Contact Angles of Static Droplets on Structured Surfaces. Droplet Impact Phenomena & Spray Investigations (DIPSI), Bergamo, Italy, 13. https://doi.org/10.6092/DIPSI2019
  50. Chu, X., Wu, Y., Rist, U., & Weigand, B. (2019). Spatial Evolution of Transition Inside Porous Media.
  51. Richter, J., Beuting, M., Schulz, C., & Weigand, B. (2019). Mixing processes in the transonic, accelerated wake of a central injector. Physics of Fluids, Vol. 31, 016102, pp. 1-16.
  52. Uddin, N., Weigand, B., & Younis, B. A. (2019). Comparative study on heat transfer enhancement by turbulent impinging jet under conditions of swirl, active excitations and passive excitations. Int. Comm. Heat Mass Transfer, Vol. 100, pp. 35-41.
  53. Foltyn, P., Roth, N., & Weigand, B. (2019). Development and calibration of the LASER Pattern Shift Method for measuring the lamella topology during drop impact on walls. 29th European Conference on Liquid Atomization and Spray Systems, 29.
  54. Liu, Y., Rao, Y., & Weigand, B. (2019). Heat transfer and pressure loss characteristics in a swirl cooling tube with dimples on the tube inner surface. Int. J. Heat Mass Transfer, Vol. 128, pp. 54-65.
  55. Foltyn, P., Roth, N., & Weigand, B. (2019). Verfahren zur Messung der Schichtdicke einer optisch transparenten Schicht, insbesondere einer Flüssigkeitsschicht (Patent No. 19 192 074.3). Patent No. 19 192 074.3, Article Patent No. 19 192 074.3.
  56. Chu, X., Wu, Y., Rist, U., & Weigand, B. (2019). Transitional Flow in Elementary Porous Media. 12nd Direct and Large Eddy Simulation.
  57. Weigand, B., Chu, X., Yang, G., & Helmig, R. (2019). Turbulence topology in regular porous media: a microscopic analysis with direct numerical simulation.
  58. Reutzsch, J., Raja Kochanattu, G. V., Ibach, M., Kieffer-Roth, C., Tonini, S., Cossali, G. E., & Weigand, B. (2019). Direct Numerical Simulations of Oscillating Liquid Droplets: a Method to Extract Shape Characteristics. In ILASS-Europe 2019, 29th Conference on Liquid Atomization and Spray Systems: Bd. Paris, France.
  59. Chu, X., Wu, Y., Rist, W., & Weigand, B. (2019). Spatial Evolution of Transition Inside Porous Media.
  60. Seibold, F., Weigand, B., Marsik, F., & Novotny, P. (2019). Thermodynamic Stability Condition of Swirling Flows in Convergent Vortex Tubes. Proceedings of the International Gas Turbine Congress 2019 Tokyo.
  61. Mehmood, A., Usman, M., & Weigand, B. (2019). Heat and mass transfer phenomena due to a rotating non-isothermal wavy disk. Int. J. Heat Mass Transfer, Vol. 129, pp. 96-102.
  62. Forster, M., Poser, R., Rodriguez, J., Starke, A., & Weigand, B. (2019). Experimental heat transfer study of jets impinging on a curved surface. Proceedings of the International Gas Turbine Congress 2019 Tokyo.
  63. Reitzle, M., Ruberto, S., Stierle, R., Gross, J., Janzen, T., & Weigand, B. (2019). Direct numerical simulation of sublimating ice particles. International Journal of Thermal Sciences, 145. https://doi.org/10.1016/j.ijthermalsci.2019.05.009
  64. Foltyn, P., Roth, N., & Weigand, B. (2019). Verfahren zur Messung der Schichtdicke einer optisch transparenten Schicht, insbesondere einer Flüssigkeitsschicht2 (Patent No. 19 192 074.3). Patent No. 19 192 074.3, Article Patent No. 19 192 074.3.
  65. Sotgiu, C., Weigand, B., Semmler, K., & Wellinger, P. (2019). Towards a general data-driven explicit algebraic Reynolds stress prediction framework. International Journal of Heat and Fluid Flow, 79, 108454. https://doi.org/10.1016/j.ijheatfluidflow.2019.108454
  66. Chu, X., Yang, G., Pandey, S., & Weigand, B. (2019). Direct numerical simulation of convective heat transfer in porous media. International Journal of Heat and Mass Transfer, 133, 11--20.
  67. Schegk, G., Foltyn, P., Li, W.-J., A.Terzis, & B.Weigand. (2019). Oxygen and Hydrogen Plasma Activation Effects on Capillary Thermodynamics in Fibrous Materials. 9th International Colloids Conference, 16-19 June 2019 Sitges, Spain, 9.
  68. Steigerwald, J., Reutzsch, J., Ibach, M., Baggio, M., Seck, A., Haus, B. K., & Weigand, B. (2019). Direct Numerical Simulation of a Wind-generated Water Wave. In High Performance Computing in Science and Engineering ’19. Springer.
  69. Chu, X., Chang, W., Pandey, S., Luo, J., Weigand, B., & Laurien, E. (2018). A computationally light data-driven approach for heat transfer and hydraulic characteristics modeling of supercritical fluids: From DNS to DNN. International Journal of Heat and Mass Transfer, 123, 629–636. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.115
  70. Haidn, O. J., Adams, N. A., Sattelmayer, T., Stemmer, C., Radespiel, R., Schröder, W., & Weigand, B. (2018). Fundamental Technologies for the Development of Future Space Transport System Components under High Thermal and Mechanical Loads. AIAA/SAE/ASEE Joint Propulsion Conference, 9.-11. July 2018, Cincinnati, Ohio, USA.
  71. Lamanna, G., Steinhausen, C., Weigand, B., Preusche, A., Bork, B., Dreizler, A., Stierle, R., & Groß, J. (2018). On the importance of non-equilibrium models for describing the coupling of heat and mass transfer at high pressure. Int. Comm. Heat Mass Transfer, Vol. 98, pp. 49-58.
  72. Förster, F., Brack, S., Poser, R., von Wolfersdorf, J., & Weigand, B. (2018). A novel surface-integrated spray-on thermocouple for heat transfer measurements. Experimental Thermal and Fluid Science, Vol. 93, pp. 356-365.
  73. Beuting, M., Richter, J., Weigand, B., Dreier, T., & Schulz, C. (2018). Application of toluene LIF to transonic nozzle flows to identify zones of incomplete molecular mixing. Optics Express, Vol. 26, No. 8, pp. 10266-10273.
  74. Beuting, M., Schulz, C., Richter, J., & Weigand, B. (2018). Experimental Investigation of the Influence of the Pressure Gradient on the Transonic Mixing Behavior in Blunt-Body Wakes using Tracer LIF. AIAA Fluid Dynamics Conf., 25.6.-29.6.2018, Atlanta, USA.
  75. Yang, G. andWeigand, B. (2018). Investigation of the Klinkenberg effect in a micro/nanoporous medium by direct simulation Monte Carlo method. Physical Review Fluids, Vol. 3, 044201.
  76. Baab, S., Lamanna, G., & Weigand, B. (2018). Two-phase disintegration of high-pressure retrograde fluid jets at near-critical injection temperature discharged into a subcritical pressure atmosphere. Int. J. Multiphase Flow, Vol. 107, pp. 116-130.
  77. Winkler, S., Weigand, B., & Ligrani, P. (2018). Flow structure and surface heat transfer from a turbine component endwall using the ice formation method. Int. J. Heat Mass Transfer, Vol. 120, pp. 895-908.
  78. Sotgiu, C., Weigand, B., & Semmler, K. (2018). A turbulent heat flux prediction framework based on tensor representation theory and machine learning. Int. Comm. Heat Mass Transfer, Vol. 95, pp. 74-79.
  79. Nayak, A. K., Haque, A., & Weigand, B. (2018). Analysis of electroosmotic flow and Joule heating effect in a hydrophobic channel. Chemical Engng. Sci., Vol. 176, pp. 165-179, 2018.
  80. Terzis, A., Yang, G., Zarikos, I., Elizalde, E., Weigand, B., Kalfas, A., & Ding, X. (2018). A temperature‑based diagnostic approach for paper‑based microfluidics. Microfluidics and Nanofluidics, Vol. 22:35, pp. 1-6.
  81. Zarikos, I., Terzis, A., Hassanizadeh, S. M., & Weigand, B. (2018). Velocity distributions in trapped and mobilized non-wetting phase ganglia in porous media. Scientific Reports, pp. 1-11.
  82. Baggio, M., & Weigand, B. (2018). A numerical method for handling arbitrary solid boundaries within the DNS multiphase code Free Surface 3D (FS3D).
  83. Kaufmann, J., Geppert, A., Ertl, M., Bernard, R., Vaikuntanathan, V., Lamanna, G., & Weigand, B. (2018). Direct Numerical Simulations of One- and Two-component Droplet Wall-Film Interactions within the Crown-type Splashing Regime. ICLASS 2018, 14th Triennial International Conference on Liquid Atomization and Spray Systems, Chicago, IL, USA, July 22-26.
  84. Chu, X., Weigand, B., & Vaikuntanathan, V. (2018). Flow turbulence topology in regular porous media: From macroscopic to microscopic scale with direct numerical simulation. Physics of Fluids, 30(6), 065102.
  85. Pandey, S., Chu, X., Laurien, E., & Weigand, B. (2018). Buoyancy induced turbulence modulation in pipe flow at supercritical pressure under cooling conditions. Physics of Fluids, 30(6), 065105.
  86. Chang, W., Chu, X., F., A., Pandey, S., Luo, J., Weigand, B., & Laurien, E. (2018). Heat transfer prediction of supercritical water with artificial neural networks. Applied Thermal Engineering, 131, 815--824.
  87. Chang, W., Chu, X., Binte Shaik Fareed, A. F., Pandey, S., Luo, J., Weigand, B., & Laurien, E. (2018). Heat transfer prediction of supercritical water with artificial neural networks. Applied Thermal Engineering, 131, 815--824. https://doi.org/10.1016/j.applthermaleng.2017.12.063
  88. Novotny, P., Weigand, B., Marsik, F., Biegger, C., & Tomas, M. (2018). Flow structures in a swirl flow - vortex breakdown condition. Journal of Physics: Conf. Series, Vol. 1045, 012031.
  89. Bernard, R., Geppert, A., Vaikuntanathan, V., Lamanna, G., & Weigand, B. (2018). On the Scaling of Crown Rim Diameter during Droplet Impact on Thin Wall-Films. 14th Triennial International Conference on Liquid Atomization and Spray Systems, Chicago, IL, USA, July 22-26.
  90. Pandey, S., Chu, X., & Laurien, E. (2017). Investigation of in-tube cooling of carbon dioxide at supercritical pressure by means of direct numerical simulation. International Journal of Heat and Mass Transfer, 114, 944--957.
  91. Wienand, J., Riedelsheimer, A., & Weigand, B. (2017). Numerical study of a turbulent impinging jet for different jet-to-plate distances using two-equation turbulence models. European Journal of Mechanics - B/Fluids, 61, 210–217. https://doi.org/10.1016/j.euromechflu.2016.09.008
  92. Seck, A., Gomaa, H., & Weigand, B. (2017). Improved modeling approach for the interaction between droplets and blades in a compressor cascade.
  93. Richter, J., Steinhausen, C., Weigand, B., Beuting, M., Dreier, T., & Schulz, C. (2017). Non-intrusive frequency measurements of bluff-body vortex shedding at high Reynolds numbers. Proceedings ISABE 2017: 23rd International Society of Air-breathing Engines: 3-8 September 2017, Manchester, UK.
  94. Pandey, S., Laurien, E., & Chu, X. (2017). A modified convective heat transfer model for heated pipe flow of supercritical carbon dioxide. International Journal of Thermal Sciences, 117, 227--238.
  95. Ruberto, S., Reutzsch, J., Roth, N., & Weigand, B. (2017). A systematic experimental study on the evaporation rate of supercooled water droplets at subzero temperatures and varying relative humidity. Experiments in Fluids, 58(5), 55. https://doi.org/10.1007/s00348-017-2339-5
  96. Chu, X., Laurien, E., & McEligot, D. M. (2016). Direct numerical simulation of strongly heated air flow in a vertical pipe. International Journal of Heat and Mass Transfer, 101, 1163--1176.
  97. Chu, X., & Laurien, E. (2016). Investigation of Convective Heat Transfer to Supercritical Carbon Dioxide with Direct Numerical Simulation. In High Performance Computing in Science and Engineering´ 15 (S. 315--331). Springer.
  98. Wienand, J., Riedelsheimer, A., & Weigand, B. (2016). Numerical study of a turbulent impinging jet for different jet-to-plate distances using two-equation turbulence models. In 16.
  99. Schlottke, J., Straub, W., Beheng, K. D., Gomaa, H., & Weigand, B. (2010). Numerical investigation of collision-induced breakup of raindrops. Part I: Methodology as well as dependencies on collision energy and eccentricity. Journal of the Atmospheric Sciences, Vol. 67, pp. 557-575.
  100. Straub, W., Beheng, K. D., Seifert, A., Schlottke, J., & Weigand, B. (2010). Numerical investigation of collision-induced breakup of raindrops. Part II: Parametrizations coalescence efficiencies and fragment size distributions. Journal of the Atmospheric Sciences, Vol. 67, pp. 576-588.
Zum Seitenanfang